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A sorting algorithm

Defined by Hopkins, McConville and Propp, (Elec. J. Comb.,
2017).

Start with chips labelled 1, . . . , n initially at the origin in Z.

At each time step, do the following:
1 If no position has two or more chips, stop. Else, go to step 2.
2 Choose a position i uniformly at random among positions

occupied by more than one chip.
3 Pick two chips uniformly from those at site i .
4 If the two chips are α, β with α < β, then move α to position

i − 1 and β to i + 1.
5 Go to step 1.
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Example: n = 4

1O
2O
3O
4O

−2 −1 0 1 2
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The main result

Theorem (Hopkins, McConville and Propp, Elec. J. Comb., 2017)

When n is even, the chips end up at positions

−n

2
, . . . ,−1, 1, . . . ,

n

2

and are always sorted.
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Example: n = 5
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Open problem

When n is odd, it is easy to see that the chips end up at positions

−n − 1

2
, . . . ,

n − 1

2
.

Conjecture (Hopkins, McConville and Propp, Elec. J. Comb., 2017)

When n is odd, the chips get sorted with probability tending to 1/3
as n→∞.
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Further work

Root system chip firing:
1 Galashin, Hopkins, McConville and Postnikov (SLC 2018),
2 Galashin, Hopkins, McConville and Postnikov (Math. Z. 2019),
3 Hopkins and Postnikov (Alg. Comb. 2019).

Progress towards proving the 1/3-conjecture:
1 Klivans and Liscio (SLC 2020),
2 Felzenszwalb and Klivans (JCTA 2021).
3 Klivans and Liscio (arXiv:2006.12324).
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Modification of the process

Suppose n is even and fix r ∈ [n].

Assume that the chip labelled r is infinitely heavy, and cannot
be moved.

Then one ends up in a configuration which has 2 chips at the
origin (one of which is r) and 1 chip each at positions

−n

2
+ 1, . . . ,−1, 1, . . . ,

n

2
− 1.

1O
2O
4O
3O

−2 −1 0 1 2

Now, if we lighten r and let the process continue, we get a
sorted permutation (by the HMP theorem).
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Motivation

Consider the last stage where r is still infinitely heavy. E.g.

1O
2O 3O 4O

−2 −1 0 1 2

That configuration can be considered as a permutation
π ∈ Sn−1 plus an extra label, r .

In the above example, π = 213, r = 3.

According to HMP, all pairs (π, r) that arise this way end up
sorted.

It is natural to ask what are all the pairs which end up being
sorted.
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Notation

Let π = (π1, . . . , πn) ∈ Sn and r ∈ [n + 1].

Let Ln = {−b(n + 1)/2c, . . . ,−1, 0, 1, . . . , bn/2c+ 1}.
1 Place the elements π1, . . . , πn in positions

−
⌊
n − 1

2

⌋
, . . . ,−1, 0, 1, . . . ,

⌊n
2

⌋
.

2 Increase the labels in π greater than or equal to r by 1.

3 Add r to the origin.

We will call this initial condition π(r).

Eg with r = 2: ρ = 3142 ∈ S4, σ = 25134 ∈ S5.

ρ(2) =

1
4 2 5 3

−2 −1 0 1 2 3
, σ(2) =

1
3 6 2 4 5

−3 −2 −1 0 1 2 3
.
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Definitions

For π ∈ Sn and r ∈ [n+ 1], we consider the toppling dynamics.

The toppling dynamical system on Ln induces a map
T : Sn × [n + 1]→ Sn+1.

Let id be the identity (namely sorted) permutation.

Definition

We say that a permutation π is r -toppleable if T (π, r) = id, and
we say that π is toppleable if π is r -toppleable for all r ∈ [n + 1].
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Basic properties

Proposition

Fix π ∈ Sn and r ∈ [n + 1]. The toppling dynamical system on Ln
with initial condition π(r) satisfies the following properties.

1 The final configuration is deterministic.

2 At every time step, the configuration lives in Ln.

3 In the final configuration, there is precisely one chip at every
position in Ln, except the origin (resp. position 1) when n is
odd (resp. even).

Main idea: No position contains more than 2 chips at any time.
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Symmetry for n odd

Proposition (Symmetry)

Suppose n ≥ 3 is odd, r ∈ [n + 1], π = (π1, . . . , πn) ∈ Sn.

Let π̂ = (n + 1− πn, . . . , n + 1− π1).

Then the toppling dynamics on π(r) is isomorphic to that on
π̂(n+2−r) via the map which reflects configurations about the
origin and interchanges chip i with n + 2− i .

Since îd = id, π is r -toppleable if and only if π̂ is
(n + 2− r)-toppleable.

Main idea: Isomorphism for any single toppling move.
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Number of toppleable permutations

Let tr (n) be the number of r -toppleable permutations.

Let t(n) be the number of toppleable permutations in Sn.

For n = 3, there are four 1-toppleable permutations, namely
123, 213, 132 and 231, . . .

and four 4-toppleable permutations, namely 123, 213, 132 and
312.

Therefore, t1(3) = t4(3) = 4.

The common permutations among these turn out also to be
2- and 3-toppleable.

Hence t(3) = t2(3) = t3(3) = 3.
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Data

n \r 1 2 3 4 5 6 7 8 9

3 4 3 3 4
4 14 10 7 7 8
5 46 38 31 31 38 46
6 230 184 146 115 115 130 146
7 1066 920 790 675 675 790 920 1066
8 6902 5836 4916 4126 3451 3451 3842 4264 4718

The number of r -toppleable permutations, tr (n), for 3 ≤ n ≤ 8.
Note the symmetry for odd n.

Statement of Main Result 3

Statement of monotonicity theorem
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Background for the main result: excedance sets

An excedance of a permutation π is any position i such that
πi > i .

The positions at which there are excedances for π is called the
excedance set of π.

Ehrenborg and Steingŕımsson (Adv. Appl. Math., 2000)
initiated the study of permutations whose excedance set is
{1, . . . , k} for 0 ≤ k ≤ n − 1.

They gave a formula for the number an,k of such
permutations in Sn.

One surprising result they found is that an,k = an,n−1−k .

A related result of Clark and Ehrenborg (Europ. J of C, 2010)
is ∑

r ,s≥0

ar+s,s
x r

r !

y s

s!
=

e−x−y

(e−x + e−y − 1)2
.
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Main result 1

Theorem (A., Hathcock and Tetali, 2020+)

For all n,
t(n) = tbn/2c+1(n) = tbn/2c+2(n).

Furthermore,

t(n) = a

(
n,

⌊
n − 1

2

⌋)
.

Using the exponential generating function, de Andrade, Lundberg
and Nagle (Europ. J. of C, 2015) obtained the asymptotic formula,

t(n) =
1

2 log 2
√

1− log 2 + o(1)

n!

(2 log 2)n
.
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Acyclic orientations and chromatic polynomials

Let G be a simple (no loops or multiple edges) undirected
graph.

An orientation of G is an assignment of arrows to the edges of
G .

An acyclic orientation (AO) is an orientation in which there is
no directed cycle.

A proper colouring of G is an assignment of colours to vertices
such that no two adjacent vertices get the same colour.

The chromatic polynomial of G , denoted χG (q), is the
number of proper colourings of G with q colours.

Theorem (Stanley, Disc. Math., 1973)

The number of acyclic orientations of G (up to sign) is χG (−1).
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Example: C4, the 4-cycle

So

Si

So

So So

So So So

So

Si Si

Si

Si Si Si

Si

There are 14 acyclic orientations for C4. Seven are shown here.
The other seven are obtained by reversing each of the arrows.
The chromatic polynomial is χC4(q) = q4 − 4q3 + 6q2 − 3q.
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Acyclic orientations with unique sink

Definition

An acyclic orientation with a unique sink (AUSO) is an acyclic
orientation with exactly one sink.

Theorem (Greene and Zaslavsky, Trans. of the AMS, 1983)

The number of AUSOs of G (up to sign) is independent of the sink
and equal to (up to sign) the linear coefficient of χG (−1).

C4 has 3 AUSOs, shown in red on the previous page.
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Main result 2

Recall that Km,n is the complete bipartite graph with parts of size
m and n.
For example, C4

∼= K2,2.

Theorem (A., Hathcock and Tetali, 2020+)

For all n, t(n) is equal to the number of acyclic orientations with a
fixed unique sink of Kdn/2e,bn/2c+1.

This proof is bijective.
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Poly-Bernoulli numbers

The well-known polylogarithm function is given by

Lik(z) =
∞∑
i=1

z i

ik
.

Recall that a position k is an ascent in a permutation if
πk < πk+1.

The Eulerian number

〈
m
j

〉
is the number of permutations in

Sn with j ascents.

For a non-negative integer m,

Li−m(z) =

m−1∑
j=0

〈
m
j

〉
zm−j

(1− z)m+1
.
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Poly-Bernoulli numbers

Poly-Bernoulli numbers of type B were defined by Kaneko
(1997) via the exponenital generating function,

∞∑
n=0

Bn,k
xn

n!
=

Li−k(1− e−x)

1− e−x
,

A surprising result is that Bk,n = Bn,k .

There are many combinatorial interpretations for Bn,k .

For example, the number of AOs of Kn,k is Bn,k .

A permutation π ∈ Sk+n is said to be a (k , n)-Vesztergombi
permutation if −k ≤ πi − i ≤ n for 1 ≤ i ≤ k + n.

The number of (k , n)-Vesztergombi permutations is Bn,k .



Labelled toppling Toppleable permutations Proof ideas Extensions

The first few poly-Bernoulli numbers

n\k 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 2 4 8 16 32

2 1 4 14 46 146 454

3 1 8 46 230 1066 4718

4 1 16 146 1066 6906 41506

5 1 32 454 4718 41506 329462
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Forward difference operators

Let ∆ be the discrete (forward) difference operator, i.e. for
any function f (n), ∆(f (n)) = f (n + 1)− f (n).

The higher difference operators are obtained by composition.

For example, ∆2(f (n)) = f (n + 2)− 2f (n + 1) + f (n).

Note that ∆0(f (n)) = f (n).
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Main result 3

Back to data

Theorem (A. and Bényi, 2021+)

The number of r -toppleable permutations in Sn is

tr (n) = ∆r−1
(
Bn−p+1−r ,p

)
,

where p = b(n + 1)/2c and ∆ acts on the first index.

We generalise this result to any position of adding the extra
chip.

We also characterise all possible final permutations and
enumerate permutations toppling to these.
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Focus on odd n

For each statement, the results for odd and even n differ
slightly.

To make the presentation cleaner, we state the results only for
odd n.

This will avoid the presence of floors and ceilings all over the
place.

The corresponding results for even n are given in
arXiv:2010.11236.
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A useful lemma

Lemma

Suppose π ∈ S2m+1 is r -toppleable. Then

1 for each 1 ≤ k ≤ m + 1, the final move of chip k when
toppling π(r) is to the left;

2 for each m + 2 ≤ k ≤ n + 1, the final move of chip k when
toppling π(r) is to the right;

3 in the final move, chips m + 1 and m + 2 topple to their
correct positions.

(1) and (2) follow by induction on k.
(3) follows from the fact that the origin is vacant at the end.
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Monotonicity

Theorem (A., Hathcock and Tetali, 2020+)

Let π ∈ S2m+1.

1 Suppose 2 ≤ r ≤ m + 1. Then π is (r − 1)-toppleable if π is
r -toppleable.

2 Suppose m + 2 ≤ r ≤ 2m. Then π is (r + 1)-toppleable if π is
r -toppleable.

3 π is (m + 1)-toppleable if and only if π is (m + 2)-toppleable.

Back to data
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Ideas in the proof of the monotonicity theorem

(1) and (2) are equivalent by symmetry. Focus on (1).

Suppose π is r -toppleable.

The only difference between π(r) and π(r−1) is that the
positions of r − 1 and r are interchanged.

By definition, r is at the origin of Ln in π(r) and let j be the
position of r − 1 in π(r).

If j = 0, then π(r) = π(r−1) and the result trivially holds.

At each step of the toppling procedure, π(r) and π(r−1)

continue to differ only in their positions of r − 1 and r .

This will be the case until we reach the point when r − 1 and
r are at the same position.

At this point, the two topplings are coupled and the final
result is identity.
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Ideas in the proof of the monotonicity theorem

The only problem with this argument is that we could have
reached the final result without ever being coupled.

If j > 0, that means r − 1 is to the right of r in π(r).

But we know that eventually r − 1 will end up to the left of r .

Therefore, there will necessarily be a time when r − 1 and r
are at the same site.

If j < 0, the initial situation is

r
. . . r − 1 . . . a b . . .

j . . . 0 1 . . .

There are again two cases depending on whether r >< a.

We use a double induction on j and n, and previous lemma to
conclude the result.
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We use a double induction on j and n, and previous lemma to
conclude the result.
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The notion of a pass

For π ∈ S2m+1, let the number of chips at each site of Ln in
π(r) be

p(r) = ( , 1, . . . , 1, 2̂, 1, . . . , 1, ).

Topple as follows:

p(r) →( , 1, . . . , 1, 1, 2, ˆ, 2, 1, 1, . . . , 1, )

→( , 1, . . . , 1, 2, , 2̂, , 2, 1, . . . , 1, )

→( , 1, . . . , 2, , 1, 2̂, 1, , 2, . . . , 1, ).

At this point, we leave the origin unchanged and start to
topple the vertices with 2 chips both on the left and right,
until we reach the end.

We then arrive at the configuration with chip counts given by

(1, , 1, . . . , 1, 2̂, 1, . . . , 1, , 1).
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The notion of a pass

Now, the extremal points cannot be modified by any further
topplings and are fixed.

We call this sequence of topplings the first pass.

This consists of 2m + 1 individual topplings.

Similarly, the second pass will be initiated by toppling the
origin in a similar way, and we will end up with

(1, 1, , 1, . . . , 1, 2̂, 1, . . . , 1, , 1, 1).

Continue this way until the configuration stabilizes.

If n is odd, then we see that after (n + 1)/2 passes, the
configuration will freeze leaving the origin empty.



Labelled toppling Toppleable permutations Proof ideas Extensions

Observations about passes

Every chip between vacancies topples at least once in every
pass.

If π ∈ S2m+1 is toppleable, then for 1 ≤ i ≤ m + 1, i and
2m + 2− i get fixed in their correct positions at the end of
the i ’th pass.

For example:

1
3 6 2 4 5

first−→
pass

2
1 3 6 4 5

second−→
pass

3
1 2 4 6 5

third−→
pass 1 2 3 4 6 5
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Positions of 1 and n

Lemma

If π ∈ S2m+1 is toppleable, then 1 is in position at most m+ 1 in π.

Conversely, if 1 (resp n) is in position at most m + 1 (at least
m + 1) in π, then 1 (resp n + 1) is in the first (resp. last) position
in T (π,m + 1).
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Positions of 1 and n

Proof.

Suppose 1 is to the right of the origin in π(m+1). Then, in the
first pass, 1 will move exactly one position to the left (since it
is smallest) at the end of the first pass. Therefore, 1 is not
frozen in its correct position, which is the extreme left. So π
cannot be toppleable.

Conversely, suppose 1 is in a position on or to the left of
center. Then it gets a partner at some point during the first
pass. After that time, it keeps moving left for all future times
until the first pass ends and gets placed at the extreme left,
its correct position. A similar argument works for n.

A generalization of this idea proves the structure theorem.



Labelled toppling Toppleable permutations Proof ideas Extensions

Positions of 1 and n

Proof.

Suppose 1 is to the right of the origin in π(m+1). Then, in the
first pass, 1 will move exactly one position to the left (since it
is smallest) at the end of the first pass. Therefore, 1 is not
frozen in its correct position, which is the extreme left. So π
cannot be toppleable.

Conversely, suppose 1 is in a position on or to the left of
center. Then it gets a partner at some point during the first
pass. After that time, it keeps moving left for all future times
until the first pass ends and gets placed at the extreme left,
its correct position. A similar argument works for n.

A generalization of this idea proves the structure theorem.



Labelled toppling Toppleable permutations Proof ideas Extensions

Structure theorem

Theorem (A., Hathcock and Tetali, 2020+)

A permutation π ∈ S2m+1 is (m + 1)−toppleable if and only if

πi ≤ m + i , 1 ≤ i ≤ m,

πi ≥ i −m, m + 1 ≤ i ≤ 2m + 1.

Equivalently,

π−1
i ∈ {1, . . . ,m + i}, 1 ≤ i ≤ m + 1

π−1
i ∈ {i −m, . . . , 2m + 1}, m + 2 ≤ i ≤ 2m + 1.

Main idea: The notion of a pass, previous lemma and induction.
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Bijection

Lemma

Permutations π ∈ S2m+1 such that πi ≤ m + i for 1 ≤ i ≤ m and
πi ≥ i −m for m + 1 ≤ i ≤ 2m + 1 are in bijection with
permutations in S2m+1 whose excedance set is {1, . . . ,m}.

Proof idea.

(π1, . . . , πm|πm+1, . . . , π2m+1)

→ σ = 2m + 2− (πm, . . . , π1|π2m+1, . . . , πm+1).



Labelled toppling Toppleable permutations Proof ideas Extensions

Illustration for m = 2

Consider π ∈ S5 such that π1 = 3 and

1 πi ≤ 2 + i for 1 ≤ i ≤ 2, and

2 πi ≥ i − 2 for 3 ≤ i ≤ 5.

Toppleable permutations Permutations σ with
π2 = 3 and excedance set {1, 2}

31245 53124
31254 53214
31425 53142
31524 53241
32145 43125
32154 43215
34125 23145
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Proof of main result

Proof.

By the monotonicity result, we see that π ∈ S2m+1 is
toppleable if it is (m + 1)-toppleable.

According to the structure theorem, πi ≤ m + i for 1 ≤ i ≤ m
and πi ≥ i −m for m + 1 ≤ i ≤ 2m + 1.

Now, the previous lemma proves that the number of such
permutations is a2m+1,m bijectively, completing the proof.
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Back to HMP toppling

Theorem (Lemma 12, Hopkins, McConville and Propp)

Starting with n chips at the origin, the position of chip k lies
between −b(n + 1− k)/2c and bk/2c for 1 ≤ k ≤ n at all times.

When n is odd, n = 2m + 1, the final configuration will
contain single chips in all positions −m through m.

We now apply this condition to count permutations arising
from this condition switching positions from [−m,m] to [n].

For n even, the only permutation that appears as a result of
toppling is id.

We also consider this case, although it is not directly relevant
to the toppling problem.
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Collapsed permutations

Definition

We say that a permutation π ∈ Sn is collapsed if

π−1
k ≥

{
dk/2e n odd,

1 + bk/2c n even
and π−1

k ≤ dn/2e+ bk/2c.

Let Gn be the subset of collapsed permutations in Sn

For n = 2m + 1,

i 1 2 3 . . . 2m 2m + 1

Position of i ≥ 1 1 2 . . . m m + 1
Position of i ≤ m + 1 m + 2 m + 2 . . . 2m + 1 2m + 1

For example, G3 = {123, 132, 213} and G4 = {1234, 1324}.
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Seidel triangle for the Genocchi numbers

To state our results, we recall a well-known combinatorial
triangle.

The Seidel triangle is the triangular sequence Sn,k for n ≥ 1
given by

S1,1 =1,

Sn,k =0, k < 2 or (n + 3)/2 < k ,

S2n,k =
∑
i≥k

S2n−1,i ,

S2n+1,k =
∑
i≤k

S2n,i .
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First few rows

n\k 2 3 4 5 6

1 1
2 1
3 1 1
4 2 1
5 2 3 3
6 8 6 3
7 8 14 17 17
8 56 48 34 17
9 56 104 138 155 155

10 608 552 448 310 155
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Genocchi numbers of the first kind

The numbers on the rightmost diagonal are the Genocchi
numbers of the first kind, g2n.

They counts permutations in S2n−3 whose excedence set is
{1, 3, . . . , 2n − 5}.
For example, g8 = 17:

21435, 21534, 21543, 31425, 315, 24, 31542, 32415, 32514,

32541, 41523, 41532, 42513, 42531, 51423, 51432, 52413, 52431.

The exponential generating function of g2n is given by∑
n≥0

g2n
x2n

(2n)!
= x tan

(x
2

)
.
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Odd collapsed permutations

Theorem

The number of collapsed permutations in S2n+1 is g2n+4.

Define a bijection f : G2n+1 → S2n+1 which send

π 7→ σ = (σ1, . . . , σ2n+1)

such that
1 σ2i = πi , σ2i−1 = πn+1+i for 1 ≤ i ≤ n, and
2 σ2n+1 = πn+1.

The bijection for n = 1 is illustrated below:

G3 S3 with excedence set {1}
132 213
123 312
213 321
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Genocchi numbers of the second kind

The numbers on the leftmost diagonal are the median
Genocchi numbers or Genocchi numbers of the second kind,
H2n+1.

They count among other things, ordered pairs ((a1, . . . , an−1),
(b1, . . . , bn−1)) ∈ Zn−1 × Zn−1 such that 0 ≤ ak ≤ k and
1 ≤ bk ≤ k for all k and {a1, . . . , an−1,
b1, . . . , bn−1} = [n − 1].

For example, H7 = 8:

((0, 0), (1, 2)), ((0, 1), (1, 2)), ((0, 2), (1, 1)), ((0, 2), (1, 2)),

((1, 0), (1, 2)), ((1, 1), (1, 2)), ((1, 2), (1, 1)), ((1, 2), (1, 2)).

In terms of the Genocchi numbers of the first kind, we have

H2n+1 =
n∑

i=0

g2n−2i

(
n

2i + 1

)
.
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Normalized median Genocchi numbers

Although it is not clear either from the above definition or the
formula, H2n+1 is always divisible by 2n.

The numbers hn = H2n+1/2n are called the normalized
median Genocchi numbers.
The first few numbers of this sequence are

{hn}7
n=0 = {1, 1, 2, 7, 38, 295, 3098, 42271}.

A classical combinatorial interpretation for these are certain
configurations first defined by Hippolyte Dellac in 1900.
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Dellac configuration

Definition

A Dellac configuration of order n is a 2n × n array containing 2n
points, such that every row has a point, every column has two
points, and the points in column j lie between rows j and n + j ,
both inclusive, 1 ≤ j ≤ n.

For example, when n = 3, the 7 Dellac configurations are

•
•
•
•
•
•

,

•
•
•
•

•
•

,

•
•

•
•
•
•

,

•
•

•
•
•
•

,

•
•

•
•

•
•

,

•
•
•

•
•
•

,

•
•
•

•
•
•

.
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Even collapsed permutations

Theorem

The number of collapsed permutations in S2n is given by H2n−1.

Both 2i and 2i + 1 have to lie in positions between i + 1 and
i + n, both inclusive, for 1 ≤ i ≤ n − 1.

Thus, #G2n is divisible by 2n−1.

Focus on π ∈ G2n such that 2i precedes 2i + 1 in one-line
notation for all i .

Since π1 = 1 and π2n = 2n are forced, we focus on
(π2, . . . , π2n−1).
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Bijection

Construct a configuration C of points on an
(2n − 2)× (n − 1) array as follows:

For 2 ≤ i ≤ 2n − 1, place a point in position (i − 1, bπi/2c).

C is a Dellac configuration and this can be inverted.

For example, the permutation 1 243657︸ ︷︷ ︸ 8 ∈ G8 is in bijection

with
•
•

•
•

•
•

.
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